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Abstract—The principal eigenvector x1 belonging to the
largest adjacency eigenvalue (i.e. the spectral radius) λ1 of a
graph is one of the most popular centrality metrics. The spectral
radius λ1 of the adjacency matrix powerfully characterizes the
dynamic processes on networks, such as virus spread and syn-
chronization. The sum of components of the principal eigenvector,
which is also called the fundamental weight w1, is argued to be
as important as the eigenvalues of the graph matrix. Here we
theoretically prove two new types of lower bound wL and wD for
the fundamental weight w1 in any network. The lower bound wL

is related to the clique number (the size of the largest clique) of
the network. The lower bound wL is sharper than the wD whereas
the computational complexity of wD is lower. We compare the
sharper lower bound wL with w1 in different networks. The effect
of the network structure on the relative deviation of wL is studied.
Based on wL, another new lower bound for w1 is proposed for
a special type of networks.

I. INTRODUCTION

The largest eigenvalue λ1 of the adjacency matrix A, called
the spectral radius of the graph, has been shown to play
an important role in dynamic processes on graphs, such as
SIS (susceptible-infected-susceptible) virus spread [1], [2], [3]
on a given network topology. In the past decade, researches
have focused on how topological changes, such as link (or
node) removal, may alter the spectral radius. Van Mieghem
et al. [4] studied link removal strategies that minimize the
spectral radius and showed that the best strategy to minimize
the spectral radius is based on the components of the principal
eigenvector x1. It underlines the importance to understand x1.
Moreover, in susceptible-infected-susceptible (SIS) epidemic
processes, the meta-stable state infection vector V∞ = ςx1
when the effective spreading rate τ = τ

(1)
c + ς , where

τ
(1)
c = 1/λ1 is the lower bound of the exact SIS epidemic

threshold and ς > 0 is an arbitrary small constant [5]. In
other words, x1 is proportional to the infection probabilities of
the nodes in the meta-stable state with an effective spreading
rate that is just above the epidemic threshold. In this case, the
fundamental weight w1 = uTx1 where u is the all-one vector,
is thus proportional to the number of infected nodes.

Furthermore, nodal centrality metrics quantify the “impor-
tance” of a node in a network or how “central” a node is
in the graph. Many quantifiers of nodal “importance” have
been proposed in literature [6], [7], [8], [9], [10]. The principal
eigenvector of complex networks is one of the most popular
nodal centrality metrics [11], [12], [13]. Li et al. [14], [15]

have studied the influence of the assortativity1 on the principal
eigenvector and the relation between the principal eigenvector
and other centrality metrics.

However, there is currently no better lower bound for
the fundamental weight w1 of the principal eigenvector than
1 (see [17]). In this work, we propose some new lower
bounds for w1 and study how sharp the lower bounds are
in interconnected networks. In this work, we consider the
interconnected networks that are composed of a clique and
a random network, that are randomly interconnected. The
choice of such interconnected networks is motivated by: (1)
the fact that most real-world complex networks are not isolated
but instead interconnected. These interconnected networks are
interdependent and present different structural and dynamical
features from those observed in isolated networks [18], [19],
[20], [21], [22], [23]; (2) many social networks can be modeled
as a clique randomly interconnected with a random network.
For example, the club organizers or the company leaders are
completely connected to each other forming a clique, while
other non-critical persons are randomly connected to each
other and to the clique; (3) the size of the largest clique of such
interconnected networks could be approximately controlled in
our interconnected network model. It offers a possibility to
study the influence of the size of the largest clique on how
tight the lower bounds for w1 are.

This paper is organized as follows. In Section II we derive
two new lower bounds wL and wD (see Eqs. (1) and (4)),
which are related to the size of the largest clique and the
largest degree, for the fundamental weight w1 in any network.
In Section III we compare w1 and wL in interconnected
networks with different topological features. In Sec. IV, we
study the influence of the number and the location of the
interconnections on the difference between wL and w1. In
Sec. V, we propose another new lower bound ws for the
interconnected networks introduced in Sec. III-A. Finally, we
conclude in Sec. VI.

II. NEW LOWER BOUNDS FOR THE FUNDAMENTAL
WEIGHT OF THE PRINCIPAL EIGENVECTOR

We consider a network G(N , L), where N is the set of
nodes and L is the set of links. The number of nodes is denoted
by N = |N | and the number of links by L = |L|. The network

1Assortativity ρD is also called the degree correlation, is computed as the
linear correlation coefficient of the degree of nodes connected by a link. The
assortativity describes the tendency of network nodes to connect preferentially
to other nodes with either similar (when ρD > 0) or opposite (when ρD < 0)
degree [16].



G can be represented by an N×N symmetric adjacency matrix
A, consisting of elements aij , which are either one or zero
depending on whether node i is connected to node j or not.
The networks mentioned in this paper are simple, unweighted
without self-loops nor multiple links. The largest eigenvalue λ1
of the adjacency matrix A is also called the spectral radius [17].
The principal eigenvector x1 corresponding to the spectral
radius λ1 satisfies the eigenvalue equation

Ax1 = λ1x1.

The j-th component of the principal eigenvector is denoted by
(x1)j . We call w1 =

∑
i∈N (x1)i the fundamental weight of

the principal eigenvector [13].

The size of cliques in G is denoted as ω1, ω2, · · · , ωn,
where n is the number of cliques in a network, which we
order as ω1 ≥ ω2 ≥ · · · ≥ ωn. The size ω1 of the largest
clique is called the clique number of G.

It is known [17] that the fundamental weight w1 is upper
bounded by w1 ≤

√
N in any network, and the equality occurs

for regular graphs, i.e. all degrees are equal. Here we give two
new lower bounds for w1.

Theorem 1: In any network, the fundamental weight of w1

is lower bounded by

w1 ≥ wL =

√
λ1

1− 1/ω1
(1)

Proof: The Motzkin-Straus theorem [24], [25] asserts that

1− 1

ω1
= max

x∈S
xTAx, (2)

where the simplex S contains all vectors x that lie in the hyper-
plane uTx = 1 (i.e. u is the all-one vector) and possess non-
negative components. For vectors x normalized as xTx = 1,
the Rayleigh inequalities demonstrate that xTAx ≤ λ1, with
equality only if x = x1 is the (normalized) eigenvector of A
belonging to the spectral radius λ1. When choosing x = x1

uT x1

in (2), Wilf [25] found that

(1− 1

ω1
) = max

x∈S
xTAx ≥ xT1 Ax1

(uTx1)2
=
λ1
w2

1

, (3)

where w1 ≥ 1 (see [13]). Wilf’s bound leads to the lower
bound (1) for the fundamental weight w1.

Theorem 2: In any network, the fundamental weight of w1

is lower bounded by

w1 ≥ wD =

√
λ1

1− 1/dmax
(4)

Proof: In any network, the clique number ω1 is not larger
than the largest degree dmax. With Eq. (1) and ω1 ≤ dmax,
Eq. (4) is proved.

Finding the clique number ω1 of a graph is an NP-hard
problem [26], [27]. Hence, the computational complexity of
the lower bound wD is far lower than that of wL, although
wL ≥ wD, i.e. wL is a tighter lower bound than wD. We
compare the fundamental weight w1 and its lower bound wD
in ER networks with different densities (see Fig. 1). We find

that the relative deviation w1−wD

w1
decreases with the increase

of the link density p = L/
(
N
2

)
of networks. It means that wD

is a good lower bound for w1 in networks with a large link
density.
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Fig. 1: Relative deviation w1−wD
w1

as a function of the link density p
in ER networks (N = 1000). The simulations are performed on 103

realizations.

We mainly focus on the tighter lower bound wL in the rest
of this paper.

III. COMPARISON OF THE FUNDAMENTAL WEIGHT w1

AND THE LOWER BOUND wL

In this section, we compare the fundamental weight w1 and
its lower bound wL in interconnected networks with different
topological features. We perform all the simulations on 103

network realizations, respectively.

A. Interconnected clique and random network

Fig. 2: Interconnected clique and random network

The interconnected networks here are composed of a com-
plete graph (i.e. a clique) and a random network. The clique is
a network in which every two nodes are connected by a link.
The random network used in this work is an Erdős-Rényi (ER)
graph. The ER graphs are characterized by a binomial degree
distribution with Prob

[
D̃ = k

]
=
(
N−1
k

)
p1
k(1 − p1)N−1−k,

where p1 is the probability that each node pair is connected
and D̃ is the degree of the nodes in the random network. The
size of the clique is s and the size of the random network is
N − s. The adjacency matrix of the interconnected complex
networks can be expressed as

A =

[
J − I C

CT G̃

]
,



where J is the all-one matrix, I is the identity matrix. The sub-
matrix C characterizes the interconnections between the clique
and the random network. A node in the clique is connected to
a node in the random network G̃ with a probability p2. If a
link exists between the two nodes, the corresponding element
of C is one, otherwise the element equals to zero (see Fig.
2). Note that the clique number ω1 could be larger than s, for
example, when all nodes in the clique are connected to a same
node in G̃.

B. Comparison of w1 and wL, when p1 = p2

We compare the fundamental weight w1 and its lower
bound wL in interconnected networks of size N = 20
nodes. An ER random graph is connected for large N , if
p > pc ∼ lnN/N , where pc is the disconnectivity threshold.
In this work, the disconnectivity threshold for the random
network is p̃c ∼ ln(N − s)/(N − s). We find that the relative
deviation w1−wL

w1
of the lower bound wL increases with the

increase of the interconnection probability p2 (or p1), when
p1 = p2 ≤ p̃c and ω1 is a constant value (see Fig. 3b).
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Fig. 3: (a) Fundamental weight w1 of the principal eigenvector and
its lower bound wL, as well as (b) the relative deviation of the
lower bound as a function of the clique number ω1 in interconnected
networks with p1 = p2 ≤ p̃c = ln(N − s)/(N − s). The error bars
for w1 and wL are plotted.

However, the effect of p1 (or p2) is the opposite, when
p1 = p2 > p̃c and ω1 is given (see Fig. 4b). When p1 = p2 →
0 or p1 = p2 → 1, the whole network tends to be a complete
graph in which w1 = wL. This supports our observation that
the relative deviation w1−wL

w1
increases with the increase of

p1 = p2 when p1 < p̃c, while decreases with the increase of
p1 = p2 when p1 > p̃c. We also find that w1 and wL are always
closer to each other when the clique number ω1 increases (see

Figs. 3 and 4). It might be explained by the fact that the whole
network tends to a complete graph where w1 = wL, when ω1

increases and p1 = p2 is a constant value. Another interesting
finding is that, when p1 = p2 > p̃c, w1 is not related with the
clique number ω1 any more, and tends to be constant (see Fig.
4a). The constant value of w1 is around

√
N .
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Fig. 4: (a) Fundamental weight w1 of the principal eigenvector and
its lower bound wL, as well as (b) the relative deviation of the
lower bound as a function of the clique number ω1 in interconnected
networks with p1 = p2 ≥ p̃c = ln(N − s)/(N − s). The error bars
for w1 and wL are plotted.

C. Comparison of w1 and wL, when p1 is fixed but p2 changes

0.28

0.24

0.20

0.16

0.12

0.08

0.04

0.00

(w
1-

w
L
)/

w
1

20181614121086420
ω1

     p1 = 3log(N-s)/(N-s)
 when p2 = 0.1
 when p2 = 0.3
 when p2 = 0.5
 when p2 = 0.7
 when p2 = 0.9

Fig. 5: Relative deviation of the lower bound as a function of the
clique number ω1 in interconnected networks with p1 = 3p̃c and
p2 = 0.1, 0.3, ..., 0.9.

Here we study the effect of the interconnection probability
p2 on the fundamental weight w1 and its lower bound wL.
The relative deviation w1−wL

w1
decreases with the increase

of the interconnection probability p2, when p1 = 3p̃c, in
interconnected networks with the same ω1 (see Fig. 5). The
observation implies that when the largest clique is connected



to more other nodes, the fundamental weight w1 is better lower
bounded by wL.

D. Comparison of w1 and wL, when p2 is fixed but p1 changes

In this part, the fundamental weight w1 and its lower
bound wL are studied in networks with a constant p2 = 0.5.
We find that the increase of the link density p1 reduces the
relative deviation w1−wL

w1
, when the clique number ω1 < N/2.

However, when ω1 > N/2, p1 almost does not influence the
relative deviation any more (see Fig. 6).
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Fig. 6: Relative deviation of the lower bound as a function of the
clique number ω1 in interconnected networks with p2 = 0.5 and
p1 = 0.5p̃c, 1.5p̃c, ..., 4.5p̃c, where p̃c = ln(N − s)/(N − s).

IV. COMPARISON IN SPECIAL CASES OF
INTERCONNECTED COMPLEX NETWORKS

Here we investigate the fundamental weight w1 and its
lower bound wL in interconnected networks with p1 = 0,
where ω1 = s. We denote the number of interconnections
between the clique and the random network by Lc for any s
value.

A. Effect of the location of the interconnections between the
clique and the random network on the lower bound wL in
interconnected networks (p1 = 0) with a fixed Lc

In this part we keep the number of interconnection links
fixed Lc = N − s, but change the location of the inter-
connections. For example, we study the lower bound wL in
interconnected networks with s = 2 and N = 20. One node
in the clique is interconnected to Nc1 nodes in the random
graph, and the other node in the clique is interconnected to
the remaining (N − s−Nc1) nodes in the random graph. We
find that the difference ∆w1 = w1 −wL as a function of Nc1
is almost stable when Lc is a constant (see Fig. 7). The small
peak of the difference ∆w1 appears when the s nodes in the
clique both have the same (N−ss ) interconnections to the nodes
in the random network. When the interconnections are more
evenly linked to the nodes in the clique, the maximum degree
dmax of the interconnected network is smaller. The decrease
of dmax could lead to the decrease of λ1. Correspondingly,
wL =

√
λ1

1−1/ω1
decreases to the minimum value, when each

node in the clique is interconnected to N−s
s nodes in the

random network.

We then study the effect of ω1 = s on the difference
∆w1 = w1 − wL. We still keep Lc = N − s and randomly
link every node in the random graph to one and only one

node in the clique. We find that the relative deviation w1−wL

w1

exponentially decreases with the clique number ω1 (see Fig.
8 inset). In this kind of networks, the maximum degree is
dmax = E[D]clique = (s− 1 + N−s

s ). Figure 8 shows that the
difference ∆w1 = w1 − wL is equal to zero, when ω1 = s is
sufficiently large.
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Fig. 7: Fundamental weight w1 of the principal eigenvector and its
lower bound wL as a function of Nc1 in interconnected networks
with the clique number ω1 = s = 2 and network size N = 20. The
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Fig. 8: Fundamental weight w1 of the principal eigenvector, its lower
bound wL, and the relative deviation of the lower bound as a function
of the clique number ω1 in networks (N = 1000). The networks
contain a clique of size s and a random graph with (N − s) nodes
which are randomly connected to one and only one node in the clique.
The simulations are performed on T = 103 realizations and the error
bars for w1 and wL are plotted.
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B. Effect of the number Lc of interconnections between the
clique and the random network (p1 = 0) on the lower bound
wL

We first investigate the influence of Lc on the lower bound
wL in interconnected networks with a fixed clique size s = 2
and a link density p1 = 0. We find that the difference ∆w1 =
w1 − wL increases with the increase of the interconnection
number Lc (see Fig. 9).

We next study the fundamental weight w1 and its lower
bound wL in interconnected networks with s = N − 1 (see
Fig. 10). We find that w1 can be well lower bounded by wL
when Lc → 0 and Lc → N − 1 (see Fig. 11). This can be
explained as follows: (1) when Lc = 0 and Lc = N − 1, the
interconnected network can be considered as a network with
separated cliques; (2) the fundamental weight w1 of networks
with separated cliques is equal to

√
ω1; and (3) the lower bound

wL =
√

λ1

1− 1
ω1

, where λ1 = ω1 − 1. Hence, wL =
√
ω1 = w1

Fig. 10: Increase of the number Lc of the interconnections between
the clique (s = N − 1) and one node.
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Fig. 11: Fundamental weight w1 of the principal eigenvector and its
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In this section we have studied the fundamental weight w1

and its lower bound wL = s in some special interconnected
networks. We find that the difference ∆w1 = w1−wL is almost
fixed no matter how the interconnections are placed, when
the number Lc of interconnections between the clique and the
random network is constant. When Lc = N−s, p1 = 0 and the
clique number ω1 is sufficiently large, the difference ∆w1 = 0.
We also observe that the difference ∆w1 first increases with
the increase of the number Lc of interconnections when Lc <

s(N−s)
2 , and then decreases with the increase of Lc when Lc >

s(N−s)
2 .

V. ANOTHER LOWER BOUND FOR THE FUNDAMENTAL
WEIGHT w1 OF THE PRINCIPAL EIGENVECTOR

The problem of finding the clique number ω1 of a graph is
an NP-hard problem. Although new algorithms have been pro-
posed in literature [26], [27], [28], [29] to raise the calculating
rate, finding the maximum clique problem is still a challenge.
Here we give another fast-calculated lower bound ws for w1,
which is not related to the clique number ω1.

In interconnected networks introduced in Section III, the
probability that the clique number ω1 equals to the size s of
the clique, is

Prob [ω1 = s] = (1− p2s)N−s ≈ 1, (5)

when s ≥ N
2 , and N is sufficiently large. With Eq. (5), we

can reduce the lower bound wL of the fundamental weight of
x1 to ws =

√
λ1

1−1/s , when s ≥ N
2 and N is sufficiently large.

We compare the fundamental weight w1 and its lower
bound ws in interconnected networks (N = 20, 50, 100). We
study the influence of the network size N , the clique size s,
the link density p1 and the connecting probability p2 on the
difference between the fundamental weight w1 and the lower
bound ws in 103 network realizations, respectively. We find
that the deviation w1−ws

w1
decreases with the increase of s in

all network realizations, but increases with the increase of p1
and p2 when s ≥ N

2 (see Fig. 12).
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VI. CONCLUSION

We first theoretically prove that w1 could be lower bounded
by wL =

√
λ1

1−1/ω1
and wD =

√
λ1

1−1/dmax
in any network.

The lower bound wL is sharper since wL ≥ wD, although its
computational complexity is high. We compare the fundamen-
tal weight w1 and the better lower bound wL in interconnected
networks which are formed by randomly interconnecting a
complete network (i.e. a clique) with a random network. The
influence of topological features, such as the link density p1
of the random network and the interconnection probability p2
between the nodes in the clique and the nodes in the random
network, on the fundamental weight w1 and its lower bound
wL is studied. We find that the lower bound wL is closer to



w1, when the clique number ω1 increases. For networks with
a same ω1, the lower bound wL performs better, when more
nodes are connected to the largest clique. When p1 = p2 → 0
or p1 = p2 → 1, the lower bound wL → w1. We next
investigate the effect of the number Lc of interconnections
between the clique and the random network on the quality
of wL. We find that the difference ∆w1 increases with the
increase of Lc when Lc ≤ s(N−s)

2 , and decreases with the
increase of Lc when Lc ≥ s(N−s)

2 . We finally propose another
lower bound for w1 when the interconnected networks we
considered are large and the size of the clique s ≥ N/2. This
lower bound performs better as the clique size s increases.
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